Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069184

RESUMO

The membrane-less organelles in cytoplasm that are presented as cytoplasmic foci were successively identified. Although multiple CCCH zinc-finger proteins have been found to be localized in cytoplasmic foci, the relationship between their specific localization and functions still needs further clarification. Here, we report that the heterologous expression of two Brassica campestris CCCH zinc-finger protein genes (BcMF30a and BcMF30c) in Arabidopsis thaliana can affect microgametogenesis by involving the formation of cytoplasmic foci. By monitoring the distribution of proteins and observing pollen phenotypes, we found that, when these two proteins were moderately expressed in pollen, they were mainly dispersed in the cytoplasm, and the pollen developed normally. However, high expression induced the assembly of cytoplasmic foci, leading to pollen abortion. These findings suggested that the continuous formation of BcMF30a/BcMF30c-associated cytoplasmic foci due to high expression was the inducement of male sterility. A co-localization analysis further showed that these two proteins can be recruited into two well-studied cytoplasmic foci, processing bodies (PBs), and stress granules (SGs), which were confirmed to function in mRNA metabolism. Together, our data suggested that BcMF30a and BcMF30c play component roles in the assembly of pollen cytoplasmic foci. Combined with our previous study on the homologous gene of BcMF30a/c in Arabidopsis, we concluded that the function of these homologous genes is conserved and that cytoplasmic foci containing BcMF30a/c may participate in the regulation of gene expression in pollen by regulating mRNA metabolism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassica , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica/genética , Brassica/metabolismo , Proteínas de Arabidopsis/genética , Pólen/genética , Pólen/metabolismo , RNA Mensageiro/metabolismo , Zinco/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Dedos de Zinco/genética
2.
Adv Sci (Weinh) ; 10(22): e2301053, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37211705

RESUMO

Most metals and alloys suffer from high friction and wear due to their low hardness and lack of self-lubrication. Although plenty of strategies have been proposed, it is still a long-standing challenge to achieve diamond-like wear in metals. Metallic glasses (MGs) are supposed to possess low coefficient of friction (COF) because of their high hardness and fast surface mobility. However, their wear rate is larger than that of diamond-like materials. Here, this work reports the discovery of Ta-rich MGs that exhibit diamond-like wear. This work develops an indentation approach for high-throughput characterization of crack resistance. By employing deep indentation loading, this work is able to efficiently identify the alloys that exhibit better plasticity and crack resistance according to the differences of indent morphology. With high temperature stability, high hardness, improved plasticity, and crack resistance, the discovered Ta-based MGs exhibit diamond-like tribological properties, featured by COF as low as ≈0.05 for diamond ball test and ≈0.15 for steel ball test, and specific wear rate of only ≈10-7 mm3 N- 1 m-1 . The discovery approach and the discovered MGs exemplifie the promise to substantially reduce friction and wear of metals and may unleash the potential of MGs in tribological applications.

3.
Front Plant Sci ; 13: 932793, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909782

RESUMO

Plant CCCH zinc-finger proteins form a large family of regulatory proteins function in many aspects of plant growth, development and environmental responses. Despite increasing reports indicate that many CCCH zinc-finger proteins exhibit similar subcellular localization of being localized in cytoplasmic foci, the underlying molecular mechanism and the connection between this specific localization pattern and protein functions remain largely elusive. Here, we identified another cytoplasmic foci-localized CCCH zinc-finger protein, AtC3H18, in Arabidopsis thaliana. AtC3H18 is predominantly expressed in developing pollen during microgametogenesis. Although atc3h18 mutants did not show any abnormal phenotype, possibly due to redundant gene(s), aberrant AtC3H18 expression levels caused by overexpression resulted in the assembly of AtC3H18-positive granules in a dose-dependent manner, which in turn led to male sterility phenotype, highlighting the importance of fine-tuned AtC3H18 expression. Further analyzes demonstrated that AtC3H18-positive granules are messenger ribonucleoprotein (mRNP) granules, since they can exhibit liquid-like physical properties, and are associated with another two mRNP granules known as processing bodies (PBs) and stress granules (SGs), reservoirs of translationally inhibited mRNAs. Moreover, the assembly of AtC3H18-positive granules depends on mRNA availability. Combined with our previous findings on the AtC3H18 homologous genes in Brassica campestris, we concluded that appropriate expression level of AtC3H18 during microgametogenesis is essential for normal pollen development, and we also speculated that AtC3H18 may act as a key component of mRNP granules to modulate pollen mRNAs by regulating the assembly/disassembly of mRNP granules, thereby affecting pollen development.

4.
Int J Mol Sci ; 23(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35743022

RESUMO

Arabinogalactan proteins (AGPs) belong to a family of glycoproteins that are widely present in plants. AGPs are mostly composed of a protein backbone decorated with complex carbohydrate side chains and are usually anchored to the plasma membrane or secreted extracellularly. A trickle of compelling biochemical and genetic evidence has demonstrated that AGPs make exciting candidates for a multitude of vital activities related to plant growth and development. However, because of the diversity of AGPs, functional redundancy of AGP family members, and blunt-force research tools, the precise functions of AGPs and their mechanisms of action remain elusive. In this review, we put together the current knowledge about the characteristics, classification, and identification of AGPs and make a summary of the biological functions of AGPs in multiple phases of plant reproduction and developmental processes. In addition, we especially discuss deeply the potential mechanisms for AGP action in different biological processes via their impacts on cellulose synthesis and deposition based on previous studies. Particularly, five hypothetical models that may explain the AGP involvement in cellulose synthesis and deposition during plant cell wall biogenesis are proposed. AGPs open a new avenue for understanding cellulose synthesis and deposition in plants.


Assuntos
Fenômenos Biológicos , Proteínas de Plantas , Membrana Celular/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Mucoproteínas , Proteínas de Plantas/genética , Plantas/metabolismo
5.
Front Plant Sci ; 13: 806865, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211139

RESUMO

Male-sterile mutants are useful materials to study the anther and pollen development. Here, whole transcriptome sequencing was performed for inflorescences in three sterile lines of Chinese cabbage (Brassica campestris L. ssp. chinensis Makino, syn. B. rapa ssp. chinensis), the genic male-sterile line (A line), the Polima cytoplasmic male-sterile (CMS) line (P line), and the Ogura CMS line (O line) along with their maintainer line (B line). In total, 7,136 differentially expressed genes (DEGs), 361 differentially expressed long non-coding RNAs (lncRNAs) (DELs), 56 differentially expressed microRNAs (miRNAs) (DEMs) were selected out. Specific regulatory networks related to anther cell differentiation, meiosis cytokinesis, pollen wall formation, and tapetum development were constructed based on the abortion characteristics of male-sterile lines. Candidate genes and lncRNAs related to cell differentiation were identified in sporocyteless P line, sixteen of which were common to the DEGs in Arabidopsis spl/nzz mutant. Genes and lncRNAs concerning cell plate formation were selected in A line that is defected in meiosis cytokinesis. Also, the orthologs of pollen wall formation and tapetum development genes in Arabidopsis showed distinct expression patterns in the three different sterile lines. Among 361 DELs, 35 were predicted to interact with miRNAs, including 28 targets, 47 endogenous target mimics, and five precursors for miRNAs. Two lncRNAs were further proved to be functional precursors for bra-miR156 and bra-miR5718, respectively. Overexpression of bra-miR5718HG in B. campestris slowed down the growth of pollen tubes, caused shorter pollen tubes, and ultimately affected the seed set. Our study provides new insights into molecular regulation especially the ncRNA interaction during pollen development in Brassica crops.

6.
Int J Mol Sci ; 22(23)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34884948

RESUMO

Arabinogalactan proteins (AGPs) are a superfamily of hydroxyproline-rich glycoproteins that are massively glycosylated, widely implicated in plant growth and development. No comprehensive analysis of the AGP gene family has been performed in Chinese cabbage (Brassica rapa ssp. chinensis). Here, we identified a total of 293 putative AGP-encoding genes in B. rapa, including 25 classical AGPs, three lysine-rich AGPs, 30 AG-peptides, 36 fasciclin-like AGPs (FLAs), 59 phytocyanin-like AGPs, 33 xylogen-like AGPs, 102 other chimeric AGPs, two non-classical AGPs and three AGP/extensin hybrids. Their protein structures, phylogenetic relationships, chromosomal location and gene duplication status were comprehensively analyzed. Based on RNA sequencing data, we found that 73 AGP genes were differentially expressed in the floral buds of the sterile and fertile plants at least at one developmental stage in B. rapa, suggesting a potential role of AGPs in male reproductive development. We further characterized BrFLA2, BrFLA28 and BrFLA32, three FLA members especially expressed in anthers, pollen grains and pollen tubes. BrFLA2, BrFLA28 and BrFLA32 are indispensable for the proper timing of pollen germination under high relative humidity. Our study greatly extends the repertoire of AGPs in B. rapa and reveals a role for three members of the FLA subfamily in pollen germination.


Assuntos
Brassica rapa/fisiologia , Perfilação da Expressão Gênica/métodos , Mucoproteínas/genética , Brassica rapa/genética , Clonagem Molecular , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Germinação , Filogenia , Infertilidade das Plantas , Proteínas de Plantas/genética , Análise de Sequência de RNA
7.
BMC Plant Biol ; 21(1): 254, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082704

RESUMO

BACKGROUND: As an important subfamily of arabinogalactan proteins (AGPs), fasciclin-like AGPs (FLAs) contribute to various aspects of growth, development and adaptation, yet their function remains largely elusive. Despite the diversity of FLAs, only two members, Arabidopsis FLA3 and rice MTR1, are reported to be involved in sexual reproduction. In this study, another Arabidopsis FLA-encoding gene, FLA14, was identified, and its role was investigated. RESULTS: Arabidopsis FLA14 was found to be a pollen grain-specific gene. Expression results from fusion with green fluorescent protein showed that FLA14 was localized along the cell membrane and in Hechtian strands. A loss-of-function mutant of FLA14 showed no discernible defects during male gametogenesis, but precocious pollen germination occurred inside the mature anthers under high moisture conditions. Overexpression of FLA14 caused 39.2% abnormal pollen grains with a shrunken and withered appearance, leading to largely reduced fertility with short mature siliques and lower seed set. Cytological and ultramicroscopic observation showed that ectopic expression of FLA14 caused disruption at the uninucleate stage, resulting in either collapsed pollen with absent intine or pollen of normal appearance but with a thickened intine. CONCLUSIONS: Taken together, our data suggest a role for FLA14 in pollen development and preventing premature pollen germination inside the anthers under high relative humidity in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Ligadas por GPI/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Pólen/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular , Proteínas Ligadas por GPI/genética , Plantas Geneticamente Modificadas , Pólen/genética , Transporte Proteico , Água
8.
Plant J ; 106(6): 1493-1508, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33960548

RESUMO

Regulating plant architecture is a major goal in current breeding programs. Previous studies have increased our understanding of the genetic regulation of plant architecture, but it is also essential to understand how organ morphology is controlled at the cellular level. In the cell wall, pectin modification and degradation are required for organ morphogenesis, and these processes involve a series of pectin-modifying enzymes. Polygalacturonases (PGs) are a major group of pectin-hydrolyzing enzymes that cleave pectin backbones and release oligogalacturonides (OGs). PG genes function in cell expansion and separation, and contribute to organ expansion, separation and dehiscence in plants. However, whether and how they influence other cellular processes and organ morphogenesis are poorly understood. Here, we characterized the functions of Arabidopsis PG45 (PG45) in organ morphogenesis using genetic, developmental, cell biological and biochemical analyses. A heterologously expressed portion of PG45 cleaves pectic homogalacturonan in vitro, indicating that PG45 is a bona fide PG. PG45 functions in leaf and flower structure, branch formation and organ growth. Undulation in pg45 knockout and PG45 overexpression leaves is accompanied by impaired adaxial-abaxial polarity, and loss of PG45 shortens the duration of cell proliferation in the adaxial epidermis of developing leaves. Abnormal leaf curvature is coupled with altered pectin metabolism and autogenous OG profiles in pg45 knockout and PG45 overexpression leaves. Together, these results highlight a previously underappreciated function for PGs in determining tissue polarity and regulating cell proliferation, and imply the existence of OG-based signaling pathways that modulate plant development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Desenvolvimento Vegetal/fisiologia , Folhas de Planta/enzimologia , Folhas de Planta/crescimento & desenvolvimento , Poligalacturonase/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , Mutação
9.
Genes (Basel) ; 12(2)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578704

RESUMO

The growth of plant cells is inseparable from relaxation and expansion of cell walls. Expansins are a class of cell wall binding proteins, which play important roles in the relaxation of cell walls. Although there are many members in expansin gene family, the functions of most expansin genes in plant growth and development are still poorly understood. In this study, the functions of two expansin genes, AtEXPA4 and AtEXPB5 were characterized in Arabidopsis thaliana. AtEXPA4 and AtEXPB5 displayed consistent expression patterns in mature pollen grains and pollen tubes, but AtEXPA4 also showed a high expression level in primary roots. Two single mutants, atexpa4 and atexpb5, showed normal reproductive development, whereas atexpa4atexpb5 double mutant was defective in pollen tube growth. Moreover, AtEXPA4 overexpression enhanced primary root elongation, on the contrary, knocking out AtEXPA4 made the growth of primary root slower. Our results indicated that AtEXPA4 and AtEXPB5 were redundantly involved in pollen tube growth and AtEXPA4 was required for primary root elongation.


Assuntos
Arabidopsis/genética , Parede Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Plantas/genética , Raízes de Plantas/genética , Tubo Polínico/genética , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Sequência de Bases , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Células Vegetais/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Tubo Polínico/citologia , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Polinização/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
10.
Genes (Basel) ; 11(11)2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138166

RESUMO

The pollen grains produced by flowering plants are vital for sexual reproduction. Previous studies have shown that two CCCH-type zinc-finger protein genes in Brassica campestris, BcMF30a and BcMF30c, are involved in pollen development. Due to their possible functional redundancy, gain-of-function analysis is helpful to reveal their respective biological functions. Here, we found that the phenotypes of BcMF30a and BcMF30c overexpression transgenic plants driven by their native promoters were similar, suggesting their functional redundancy. The results showed that the vegetative growth was not affected in both transgenic plants, but male fertility was reduced. Further analysis found that the abortion of transgenic pollen was caused by the degradation of pollen contents from the late uninucleate microspore stage. Subcellular localization analysis demonstrated that BcMF30a and BcMF30c could localize in cytoplasmic foci. Combined with the studies of other CCCH-type genes, we speculated that the overexpression of these genes can induce the continuous assembly of abnormal cytoplasmic foci, thus resulting in defective plant growth and development, which, in this study, led to pollen abortion. Both the overexpression and knockout of BcMF30a and BcMF30c lead to abnormal pollen development, indicating that the appropriate expression levels of these two genes are critical for the maintenance of normal pollen development.


Assuntos
Brassica/genética , Pólen/genética , Brassica/crescimento & desenvolvimento , Brassica/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Pólen/ultraestrutura , Regulação para Cima , Dedos de Zinco/genética
11.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899329

RESUMO

Chinese cabbage (Brassica campestris) is an economically important leaf vegetable crop worldwide. Mounting studies have shown that cysteine-cysteine-cysteine-histidine (CCCH) zinc-finger protein genes are involved in various plant growth and development processes. However, research on the involvement of these genes in male reproductive development is still in its infancy. Here, we identified 11 male fertility-related CCCH genes in Chinese cabbage. Among them, a pair of paralogs encoding novel non-tandem CCCH zinc-finger proteins, Brassica campestris Male Fertility 30a (BcMF30a) and BcMF30c, were further characterized. They were highly expressed in pollen during microgametogenesis and continued to express in germinated pollen. Further analyses demonstrated that both BcMF30a and BcMF30c may play a dual role as transcription factors and RNA-binding proteins in plant cells. Functional analysis showed that partial bcmf30a bcmf30c pollen grains were aborted due to the degradation of pollen inclusion at the microgametogenesis phase, and the germination rate of viable pollen was also greatly reduced, indicating that BcMF30a and BcMF30c are required for both pollen development and pollen germination. This research provided insights into the function of CCCH proteins in regulating male reproductive development and laid a theoretical basis for hybrid breeding of Chinese cabbage.


Assuntos
Brassica/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Germinação , Proteínas de Plantas/metabolismo , Pólen/crescimento & desenvolvimento , Dedos de Zinco , Brassica/metabolismo , Proteínas de Plantas/genética , Pólen/metabolismo
12.
Int J Mol Sci ; 21(16)2020 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-32784897

RESUMO

Plant polygalacturonases (PGs) are closely related to cell-separation events during plant growth and development by degrading pectin. Identifying and investigating their diversification of evolution and expression could shed light on research on their function. We conducted sequence, molecular evolution, and gene expression analyses of PG genes in Brassica oleracea. Ninety-nine B. oleracea PGs (BoPGs) were identified and divided into seven clades through phylogenetic analysis. The exon/intron structures and motifs were conserved within, but divergent between, clades. The second conserved domain (GDDC) may be more closely related to the identification of PGs. There were at least 79 common ancestor PGs between Arabidopsis thaliana and B. oleracea. The event of whole genome triplication and tandem duplication played important roles in the rapid expansion of the BoPG gene family, and gene loss may be an important mechanism in the generation of the diversity of BoPGs. By evaluating the expression in five tissues, we found that most of the expressed BoPGs in clades A, B, and E showed ubiquitous expression characteristics, and the expressed BoPGs in clades C, D, and F were mainly responsible for reproduction development. Most of the paralogous gene pairs (76.2%) exhibited divergent expression patterns, indicating that they may have experienced neofunctionalization or subfunctionalization. The cis-elements analysis showed that up to 96 BoPGs contained the hormone response elements in their promoters. In conclusion, our comparative analysis may provide a valuable data foundation for the further functional analysis of BoPGs during the development of B. oleracea.


Assuntos
Brassica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas de Plantas/genética , Poligalacturonase/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Sequência de Bases , Brassica/enzimologia , Sequência Conservada/genética , Evolução Molecular , Duplicação Gênica/genética , Genoma de Planta/genética , Filogenia , Proteínas de Plantas/classificação , Poligalacturonase/classificação , Homologia de Sequência do Ácido Nucleico
13.
Int J Mol Sci ; 21(10)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408673

RESUMO

Expansins are a kind of structural proteins of the plant cell wall, and they enlarge cells by loosening the cell walls. Therefore, expansins are involved in many growth and development processes. The complete genomic sequences of Brassica rapa, Brassica oleracea and Brassica nigra provide effective platforms for researchers to study expansin genes, and can be compared with analogues in Arabidopsis thaliana. This study identified and characterized expansin families in B. rapa, B. oleracea, and B. nigra. Through the comparative analysis of phylogeny, gene structure, and physicochemical properties, the expansin families were divided into four subfamilies, and then their expansion patterns and evolution details were explored accordingly. Results showed that after the three species underwent independent evolution following their separation from A. thaliana, the expansin families in the three species had increased similarities but fewer divergences. By searching divergences of promoters and coding sequences, significant positive correlations were revealed among orthologs in A. thaliana and the three basic species. Subsequently, differential expressions indicated extensive functional divergences in the expansin families of the three species, especially in reproductive development. Hence, these results support the molecular evolution of basic Brassica species, potential functions of these genes, and genetic improvement of related crops.


Assuntos
Brassica/genética , Evolução Molecular , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas de Plantas/genética , Brassica/classificação , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Diploide , Duplicação Gênica , Genoma de Planta/genética , Filogenia , Especificidade da Espécie , Sintenia
14.
Biochem Biophys Res Commun ; 528(1): 140-145, 2020 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-32451083

RESUMO

The membraneless messenger ribonucleoprotein (mRNP) granules, including processing bodies (PBs) and stress granules (SGs), are important cytoplasmic structures in eukaryotes that can participate in gene expression through mRNA regulation. It has been verified that mRNP granules are mainly composed of proteins and translation-repressed mRNAs. Here, we reported a stop-codon read-through gene, At3g52980, in plants for the first time. At3g52980 encodes a novel non-tandem CCCH zinc-finger (non-TZF) protein named AtC3H18-Like (AtC3H18L), which contains two putative RNA-binding domains. By using transient expression system, we showed that heat treatment can induce the aggregation of diffuse distributed AtC3H18L to form cytoplasmic foci, which were similar to PBs and SGs in morphology. Further analysis did find that AtC3H18L can co-localize with markers of PB and SG. The aggregation of AtC3H18L was closely related to the cytoskeleton, and AtC3H18L-foci were highly dynamic and can move frequently along cytoskeleton. Moreover, analysis in transgenic plants showed that AtC3H18L was specifically expressed in pollen and can form cytoplasmic foci without heat treatment. It will be fascinating in future studies to discover whether and how AtC3H18L affects pollen development by participating in the assembly of mRNP granules as a protein component, especially under heat stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Códon de Terminação/genética , Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Dedos de Zinco , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Inflorescência/metabolismo , Epiderme Vegetal/citologia , Plantas Geneticamente Modificadas , Pólen/metabolismo , Domínios Proteicos , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Frações Subcelulares/metabolismo , Nicotiana/genética
15.
Plant Mol Biol ; 102(1-2): 123-141, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31776846

RESUMO

KEY MESSAGE: Conserved motif, gene structure, expression and interaction analysis of C2H2-ZFPs in Brassica rapa, and identified types of genes may play essential roles in flower development, and BrZFP38 was proved to function in flower development by affecting pollen formation. Flower development plays a central role in determining the reproduction of higher plants, and Cys2/His2 zinc-finger proteins (C2H2-ZFPs) widely participate in the transcriptional regulation of flower development. C2H2-ZFPs with various structures are the most widespread DNA-binding transcription factors in plants. In this study, conserved protein motif and gene structures were analyzed to investigate systematically the molecular features of Brassica rapa C2H2-ZFP genes. Expression of B. rapa C2H2-ZFPs in multiple tissues showed that more than half of the family members with different types ZFs were expressed in flowers. The specific expression profiles of these C2H2-ZFPs in different B. rapa floral bud stages were further evaluated to identify their potential roles in flower development. Interaction networks were constructed in B. rapa based on the orthology of flower-related C2H2-ZFP genes in Arabidopsis. The putative cis-regulatory elements in the promoter regions of these C2H2-ZFP genes were thoroughly analyzed to elucidate their transcriptional regulation. Results showed that the orthologs of known-function flower-related C2H2-ZFP genes were conserved and differentiated in B. rapa. A C2H2-ZFP was proved to function in B. rapa flower development. Our study provides a systematic investigation of the molecular characteristics and expression profiles of C2H2-ZFPs in B. rapa and promotes further work in function and transcriptional regulation of flower development.


Assuntos
Brassica rapa/genética , Dedos de Zinco CYS2-HIS2/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Motivos de Aminoácidos/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica rapa/metabolismo , Dedos de Zinco CYS2-HIS2/fisiologia , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Glucuronidase/metabolismo , Filogenia , Desenvolvimento Vegetal/genética , Desenvolvimento Vegetal/fisiologia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/crescimento & desenvolvimento , Mapas de Interação de Proteínas
16.
Plant Mol Biol ; 101(6): 537-550, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31745746

RESUMO

KEY MESSAGE: MIR159/319 have conserved evolution and diversified function after WGT in Brassica campestris, both of them can lead pollen vitality and germination abnormality, Bra-MIR319c also can function in flower development. MiR159 and miR319 are extensively studied highly conserved microRNAs which play roles in vegetative development, reproduction, and hormone regulation. In this study, the effects of whole-genome triplication (WGT) on the evolution of the MIR159/319 family and the functional diversification of the genes were comprehensively investigated in Brassica campestris. We identified 11 MIR159/319 genes in B. campestris, which produced five mature sequences. After analyzing the precursor sequences and phylogenetic tree, we found that Bra-MIR159/319 have evolutionary conservatism. Furthermore, Bra-MIR159/319 show functional diversification after WGT, as indicated by their expression patterns and the cis-element in their promoter. GUS signal showed that Bra-MIR159a and Bra-MIR319c can be expressed in anther but in different development stages. In B. campestris, overexpressed MIR159a and MIR319c contribute to late anther development and promote pollen abortion. Moreover, Bra-MIR319c can partially assume the function of MIR319a in flower development.


Assuntos
Brassica/metabolismo , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Brassica/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Pólen/genética
17.
Genes (Basel) ; 10(12)2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766424

RESUMO

miR319 was the first plant miRNA discovered via forward genetic mutation screening. In this study, we found that miR319 family members had similar sequences but different expression patterns in Brassica campestris and Arabidopsis thaliana. RT-PCR analysis revealed that Bra-MIR319a and Bra-MIR319c had similar expression patterns and were widely expressed in plant development, whereas Bra-MIR319b could only be detected in stems. The overexpression of each Bra-MIR319 family member in Arabidopsis could inhibit cell division and function in leaf and petal morphogenesis. Bra-miR319a formed a new regulatory relationship after whole genome triplication, and Bra-MIR319a overexpressing in Arabidopsis led to the degradation of pollen content and affected the formation of intine, thereby causing pollen abortion. Our results suggest that Bra-MIR319 family members have functional similarity and difference in plant development.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Brassica/crescimento & desenvolvimento , Brassica/genética , MicroRNAs , Flores/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Pólen/crescimento & desenvolvimento
18.
Int J Mol Sci ; 20(19)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569708

RESUMO

Male-sterile plants provide an important breeding tool for the heterosis of hybrid crops, such as Brassicaceae. In the last decade, circular RNAs (circRNAs), as a novel class of covalently closed and single-stranded endogenous non-coding RNAs (ncRNAs), have received much attention because of their functions as "microRNA (miRNA) sponges" and "competing endogenous RNAs" (ceRNAs). However, the information about circRNAs in the regulation of male-sterility and anther development is limited. In this study, we established the Polima cytoplasm male sterility (CMS) line "Bcpol97-05A", and the fertile line, "Bcajh97-01B", in Brassica campestris L. ssp. chinensis Makino, syn. B. rapa ssp. chinensis, and performed RNA expression profiling comparisons between the flower buds of the sterile line and fertile line by whole-transcriptome sequencing. A total of 31 differentially expressed (DE) circRNAs, 47 DE miRNAs, and 4779 DE mRNAs were identified. By using Cytoscape, the miRNA-mediated regulatory network and ceRNA network were constructed, and the circRNA A02:23507399|23531438 was hypothesized to be an important circRNA regulating anther development at the post-transcriptional level. The gene ontology (GO) analysis demonstrated that miRNAs and circRNAs could regulate the orderly secretion and deposition of cellulose, sporopollenin, pectin, and tryphine; the timely degradation of lipids; and the programmed cell death (PCD) of tapetum cells, which play key roles in anther development. Our study revealed a new circRNA-miRNA-mRNA network, which is involved in the anther development of B. campestris, which enriched the understanding of CMS in flowering plants, and laid a foundation for further study on the functions of circRNAs and miRNAs during anther development.


Assuntos
Brassica/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , RNA Circular/genética , RNA Mensageiro/genética , Transcriptoma , Redes Reguladoras de Genes , Fenótipo , Desenvolvimento Vegetal/genética
19.
Biochem Biophys Res Commun ; 518(4): 726-731, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31472956

RESUMO

In flowering plants, stamen development is a complex multistage process, which is highly regulated by a series of transcription factors. In this study, BcMF28, which encodes a R2R3-MYB transcription factor, was isolated from Brassica campestris. BcMF28 is localized in the nucleus and cytoplasm, and acts as a transcriptional activator. Quantitative real-time PCR and promoter activity analysis revealed that BcMF28 was predominately expressed in inflorescences. The expression of BcMF28 was specifically detected in tapetum, developing microspores, anther endothecium, and filaments during late stamen development. The overexpression of BcMF28 in Arabidopsis resulted in aberrant stamen development, including filament shortening, anther indehiscence, and pollen abortion. Detailed analysis of anther development in transgenic plants revealed that the degeneration of septum and stomium did not occur, and endothecium lignification was affected. Furthermore, the expression levels of genes involved in the phenylpropanoid metabolism pathway were altered in BcMF28-overexpressing transgenic plants. Our results suggest that BcMF28 plays an important regulatory role during late stamen development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Infertilidade das Plantas/genética , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Propanóis/metabolismo , Fatores de Transcrição/metabolismo
20.
Biochem Biophys Res Commun ; 518(2): 299-305, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31427085

RESUMO

Cys2/His2 zinc-finger protein (C2H2-ZFP) is widely involved in the reproductive development of plants, but its role in pollen development is still elusive. Here, we identified a pollen-related C2H2-ZFP gene named as MALE FERTILITY-ASSOCIATED ZINC FINGER PROTEIN 1 (MAZ1), which was first isolated from Arabidopsis thaliana. MAZ1 showed a preferential expression pattern in early anther development. Its mutation resulted in aberrant primexine deposition at the tetrad stage, followed by a defective multiple-layer pattern of exine with irregular baculum and no tectum. Furthermore, microspore development was arrested, and no intine layer was formed. These developmental defects led to fertility reduction and pollen abortion. This study reveals the essential role of MAZ1 in pollen wall development.


Assuntos
Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Pólen/genética , Proteínas de Arabidopsis/metabolismo , Pólen/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...